7,583 research outputs found

    Strings of droplets propelled by coherent waves

    Full text link
    Bouncing walking droplets possess fascinating properties due to their peculiar wave/particule interaction. In order to study such walkers in a 1d system, we considered the case of one or more droplets in an annular cavity. We show that, in this geometry, walking droplets form a string of synchronized bouncing droplets that share a common coherent wave propelling the group at a speed faster than single walkers. The formation of this coherent wave and the collective behavior of droplets is captured by a model.Comment: 5 Pages, 5 Figures, 2 supplementary movies (identical), supplementary .pdf fil

    Magnetic domain formation in itinerant metamagnets

    Get PDF
    We examine the effects of long-range dipolar forces on metamagnetic transitions and generalize the theory of Condon domains to the case of an itinerant electron system undergoing a first-order metamagnetic transition. We demonstrate that within a finite range of the applied field, dipolar interactions induce a spatial modulation of the magnetization in the form of stripes or bubbles. Our findings are consistent with recent observations in the bilayer ruthenate Sr3_3Ru2_2O7_7.Comment: 4 pages, 3 figures, minor changes, references adde

    Effects of crucible wetting during solidification of immiscible Pb-Zn

    Get PDF
    Many industrial uses for liquid phase miscibility gap alloys are proposed. However, the commercial production of these alloys into useful ingots with a reasonable amount of homogeneity is arduous because of their immiscibility in the liquid state. In the low-g environment of space gravitational settling forces are abated, thus solidification of an immiscible alloys with a uniform distribution of phases becomes feasible. Elimination of gravitational settling and coalescence processes in low-g also makes possible the study of other separation and coarsening mechanisms. Even with gravitational separation forces reduced, many low-g experiments have resulted in severely segregated structures. The segregation in many cases was due to preferential wetting of the crucible by one of the immiscible liquids. The objective was to analyze the wetting behavior of Pb-Zn alloys on various crucible materials in an effort to identify a crucible in which the fluid flow induced by preferential wetting is minimized. It is proposed that by choosing the crucible for a particular alloy so that the difference in surface energy between the solid and two liqud phases is minimized, the effects of preferential wetting can be diminished and possibly avoided. Qualitative experiments were conducted and have shown the competitive wetting behavior of the immiscible Pb-Zn system and 13 different crucible materials

    Inequivalent classes of closed three-level systems

    Full text link
    We show here that the Λ\Lambda and V configurations of three-level atomic systems, while they have recently been shown to be equivalent for many important physical quantities when driven with classical fields [M. B. Plenio, Phys. Rev. A \textbf{62}, 015802 (2000)], are no longer equivalent when coupled via a quantum field. We analyze the physical origin of such behavior and show how the equivalence between these two configurations emerges in the semiclassical limit.Comment: 4 pages, 1 figure. To appear as Brief Report in Physical Review

    Entanglement Entropy in the Two-Dimensional Random Transverse Field Ising Model

    Full text link
    The scaling behavior of the entanglement entropy in the two-dimensional random transverse field Ising model is studied numerically through the strong disordered renormalization group method. We find that the leading term of the entanglement entropy always scales linearly with the block size. However, besides this \emph{area law} contribution, we find a subleading logarithmic correction at the quantum critical point. This correction is discussed from the point of view of an underlying percolation transition, both at finite and at zero temperature.Comment: 4.3 pages, 4 figure

    Discrete phase-space approach to mutually orthogonal Latin squares

    Full text link
    We show there is a natural connection between Latin squares and commutative sets of monomials defining geometric structures in finite phase-space of prime power dimensions. A complete set of such monomials defines a mutually unbiased basis (MUB) and may be associated with a complete set of mutually orthogonal Latin squares (MOLS). We translate some possible operations on the monomial sets into isomorphisms of Latin squares, and find a general form of permutations that map between Latin squares corresponding to unitarily equivalent mutually unbiased sets. We extend this result to a conjecture: MOLS associated to unitarily equivalent MUBs will always be isomorphic, and MOLS associated to unitarily inequivalent MUBs will be non-isomorphic

    Raman transitions between hyperfine clock states in a magnetic trap

    Get PDF
    We present our experimental investigation of an optical Raman transition between the magnetic clock states of 87^{87}Rb in an atom chip magnetic trap. The transfer of atomic population is induced by a pair of diode lasers which couple the two clock states off-resonantly to an intermediate state manifold. This transition is subject to destructive interference of two excitation paths, which leads to a reduction of the effective two-photon Rabi-frequency. Furthermore, we find that the transition frequency is highly sensitive to the intensity ratio of the diode lasers. Our results are well described in terms of light shifts in the multi-level structure of 87^{87}Rb. The differential light shifts vanish at an optimal intensity ratio, which we observe as a narrowing of the transition linewidth. We also observe the temporal dynamics of the population transfer and find good agreement with a model based on the system's master equation and a Gaussian laser beam profile. Finally, we identify several sources of decoherence in our system, and discuss possible improvements.Comment: 10 pages, 7 figure
    • …
    corecore